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1 Introduction 

1.1 Problem description 

Over the past years, the main concern of CubeSats was to achieve a simple design that 

produces a satellite with maximum cost efficiency. Recently, a growing number of researchers 

started to look into the matters of reliability as an equally important factor for the success of 

the satellite mission. An example of that is the collaboration between researchers from TU 

Delft and TU Munich that focusses on general CubeSat reliability aspects as well as 

performance and reliability aspects of a CubeSat bus architecture. [11] shows a survey that 

they set up to collect some statistics about the current trends among CubeSat projects in 

terms of reliability orientation of satellite designs. 

Electronic components are vulnerable to a number of effects when exposed to cosmic rays. 

The collective term for the different failure mode occurrences is Single Event Phenomena 

(SEP) or Single Event Effects (SEE). The expected SEU error rate for commercial off the shelf 

(COTS) electronic components in LEO is 10-5 error/bit-day. This might appear to be a minuscule 

number, but with 128kB of RAM it amounts to over 10 errors accumulating per day in orbit 

[10]. 

Dealing with errors includes detecting, reporting and correcting these errors. When choosing 

a detection method there is often a compromise between the selected method’s efficiency, 

its required overhead and how much intervention does it require from the programmer to 

keep track of the errors. Although the last point is often overlooked, it’s not less important 

than the others. A complicated tracking method can lead a complex software structure which 

usually makes bugs harder to avoid in addition to producing a code that’s hard to maintain. 

Apart from error handling, an efficient management of the different tasks running on the 

satellite’s processor is also a critical matter. NUTS software is being designed to operate on 

top of a real time operating system – FreeRTOS. For the operating system to work in an 

optimal manner, it should be configured to reflect the design needs, and the correct 

components (e.g. the .h files) should be chosen. 

1.2 Project Overview 

The focus of this work has been to explore some of the architectural aspects of FreeRTOS and 

make some suggestions regarding the use of different options and features of this operating 

system. This includes the use of an appropriate memory management scheme and stack 

overflow detection mechanism. In addition to that, a method for detecting memory leaks is 

introduced and integrated within the FreeRTOS source files. 

In addition to that, in chapter 4 we address the need of having an efficient circular buffer 

implementation that expresses a non-blocking behavior. This feature will allow us to eliminate 

the need of using semaphores and mutexes, and therefore get rid of some hazards we may 

face otherwise such as dead locks (e.g. in case of a buggy task).  
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As mentioned earlier, dealing with errors includes detecting, reporting and correcting them. 

Chapter 5 deals with the issue of reporting errors in an efficient way that gives the 

programmer the convenience of working in the way he/she is used to, and yet producing a 

high quality code. The other common alternative for error reporting depends on setting a 

convention that requires returning an error code with each function call and passing back the 

function result as a parameter. This will make it harder to reuse previously written code and 

introduces the factor of human error.  

Chapter 6 uses the technique discussed in chapter 5 to introduce an error detection and 

correction mechanism that produces a much cleaner code with the same reliability and some 

extra overhead penalty compared to the other used methods. 

1.3 The CubeSat platform 

Usually, the term satellite technology is associated with great complexity and very high cost. 

Recent year’s development of small, inexpensive satellites known as pico and nano satellites 

has in a way changed this by considerably lowering both the price point of satellite 

construction and launch. 

An interesting development along these lines has been the introduction of the CubeSat 

platform. To help universities worldwide perform space research the CubeSat platform was 

developed in 1999 aiming to provide practical, cost-effective and reliable launch opportunities 

for small satellites and their payloads through a standardized platform measuring from 10 x 

10 x 10 cm to 10 x 10 x 30 cm [9].  

By investigating what is possible to accomplished with low cost components in terms of 

reliability, two important things can be achieved. The cost of using space platforms for 

research can be reduced while maintaining the required level of reliability and at the same 

time the number of non-functional satellites (i.e. problematic space junk) can be reduced. 

As a part of the national student satellite program, the NTNU Test Satellite (NUTS) project was 

initiated in 2010. The project’s goal is to launch a double CubeSat giving hands-on experience 

of satellite technology to students within different fields, such as electronics, communications, 

space technology, physics, cybernetics and computer science. This includes planning, 

specification, design, construction, launch and operation of a satellite. 

1.4 NUTS design 

The NUTS internal design depends on a bus structure. The main parts of the satellite bus are: 

 Power system (solar cells and batteries) 

 Attitude and orbit control 

 Mechanical system (structures and mechanisms) 

 TT&C (telemetry, tracking and command) 

 Thermal system 
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 On-board data handling 

 Payload and experiment 

The NUTS CubeSat is using the AVR32 UC3 MCU as main processor. There are two processors 

on board, one for the main computer and one for the communications system. The system is 

running the FreeRTOS operating system. 

The next figure shows an overview of the satellite modules and their connections to the 

backplane. 

 

Figure 1: Abstract overview of the satellite modules and their connections 

  



7 
 

2 Memory management 

The C programming language gives the programmer control over dynamic memory 

allocation. Reckless use of this control can lead to memory management problems, 

which cause performance degradation, unpredictable execution or crashes. 

Some of the problems that cause memory leaks are writing or reading beyond an 

allocated memory segment or trying to free memory that has already been freed. A 

memory leak occurs when memory is allocated and not freed after use, or when the 

pointer to a memory allocation is deleted, rendering the memory no longer usable. 

Memory leaks degrade performance and, over time, cause a program to run out of 

memory and crash. Access errors lead to data corruption, which causes a program to 

behave incorrectly or crash [2]. 

In the next section we will have an overview of memory management in FreeRTOS 

comparing different available implementations. After that we will discuss some 

methods to detect memory leaks. 

2.1 Memory management schemes in FreeRTOS 

A real time operating system kernel has to allocate RAM dynamically each time a task, 

queue, or semaphore is created. The use of the standard malloc() and free() 

library functions can by accompanied with some undesirable side effects for one or 

more of the following reasons [1]: 

- Their implementation can be relatively large, taking up valuable code space. 

- They are rarely thread-safe. 

- They are not deterministic; the amount of time taken to execute the 

functions will differ from call to call. 

- They can suffer from memory fragmentation. 

- They can complicate the linker configuration. 

To avoid some of these problems, an alternative memory allocation implementation 

is required. FreeRTOS defines two new functions to do that. Memory allocation can 

be done by calling pvPortMalloc() instead of calling malloc() directly. Also when 

RAM is being freed, instead of calling free() directly, the function vPortFree() is 

used. pvPortMalloc() has the same prototype as malloc(), and vPortFree() 

has the same prototype. 
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FreeRTOS contains five implementations of vPortFree() and pvPortMalloc(), 

each of them is designed to address different requirements depending on the system 

design. 

Next, each of these implementations will be described briefly with focusing on the 

main differences and when each of them is most suitable to use [3]. 

Heap_1 

This is the simplest implementation of all. It does not permit memory to be freed once 

it has been allocated. It is most suitable for systems where the application creates all 

the tasks, queues, semaphores, etc. when the system boots, and then uses all of these 

objects for the lifetime of program.  

Heap_2 

Unlike scheme 1, it allows previously allocated blocks to be freed and uses a first fit 

algorithm to allocate new blocks. However, it does not combine adjacent free blocks 

into a single large block. This scheme is suitable when the size of allocated blocks is 

always the same. Otherwise the available free memory might become fragmented 

into many small blocks, eventually resulting in allocation failures. This type is also not 

deterministic - but is much more efficient that most standard C library malloc 

implementations. 

Heap_3 

This implements a simple wrapper for the standard C library malloc() and free() 

functions. The wrapper simply makes the malloc() and free() functions thread 

safe. This scheme is also not deterministic and will probably considerably increase the 

RTOS kernel code size. 

Heap_4 

This scheme uses a first fit algorithm and, unlike scheme 2, does combine adjacent 

free memory blocks into a single large block (it does include a coalescence algorithm). 

This implementation can be used even when the application repeatedly deletes tasks, 

queues, semaphores, mutexes, etc. and when it allocates variable block sizes. 

Therefore, this scheme will most likely result in a less fragmented heap space 

compared to heap_2, even when frequent operations of allocation/deallocation are 

required.  

Although this scheme is not deterministic, it is much more efficient than most 

standard C library malloc implementations. 
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Heap_5 

This scheme uses the same first fit and memory coalescence algorithms as heap_4, 

and allows the heap to span multiple non adjacent (non-contiguous) memory regions. 

The next table shows a summary of each implementation features: 

 Deterministic  Code size Segmentation 

heap_1 Yes Small No 

heap_2 No Small High 

heap_3 No Large Target dependent 

heap_4 No Moderate Moderate 

heap_5 No Moderate Low 

2.2 Suggesting a memory management scheme 

Generally speaking, it is not recommended to use dynamic memory in embedded 

systems unless there is a very good reason for that. So in most cases the heap_1 

implementation would be favored. 

If that’s not the case then we are force to consider the other 4 options. Heap_1 plus a 

vPortFree() function will give us heap_2. Anyway, heap_2 is not that attractive to 

use since it doesn’t support combining adjacent memory blocks even if they are free, 

leading to these blocks being eventually useless, or even worse, leading to allocation 

failure. 

Heap_3 will give us the traditional C library functions which we avoided in the first 

place due to the previously mentioned reasons. 

Therefore, from my point of view, an appropriate choice for our application would be 

heap_4 since it provides a good compromise between the required overhead and 

segmentation level. Heap_5 might be desired in some cases for its additional 

convenience, but the additional code size and operation overhead should be 

evaluated against the actual usability. 

Also we should keep in mind that our choice of a memory management scheme will 

determine what options we would have when choosing a method for stack overflow 

detection. More on this topic in the stack overflow section. 
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2.3 Detecting memory leaks 

One of the problems with developing embedded systems is the detection of memory 

leaks. Some tools exist for detecting memory leaks, but most of them are either Linux 

specific or targeted to a certain compiler. 

In [4], a couple of methods for detecting memory leaks are discussed. We will review 

these methods briefly and then select one of them and try to integrate it in one of 

FreeRTOS implementations of pvPortMalloc() and vPortFree(). 

What makes memory leaks particularly harder to detect than other kind of bugs is that 

the misbehavior they cause may occur far from where the bug was caused. As a result, 

these problems are difficult to resolve by stepping through the code with a debugger. 

Therefore, code inspections sometimes catch these problems more quickly than any 

technical solution. Adding debug code to generate output is often a better alternative 

than a source code debugger, but it can change the shape of the memory layout. 

Another drawback is that if the debugging code consumes memory, we may run out 

of RAM sooner in the debug version than we would in the production version. This is 

specifically important in microcontroller based systems where a very little amount of 

RAM is available. Still, the leak should remain detectable regardless of these side 

effects of the debug code. 

For simplicity, simple wrappers of malloc() and free() functions will be used in 

the coming example codes (not the actual function defined in heap.h). 

 

2.3.1 Measuring memory usage 

The first thing we might think of to measure memory usage is to simply add up how 

much is allocated and subtract any memory freed. For malloc(), this is trivial. We 

can simply have a static value and track allocations using the following code: 

void *pvPortMalloc(size_t size) 
{ 
   size_inUse += size; 
   return malloc(size); 
} 

Deallocating is a bit trickier, since free() is not passed a size. Instead, the free() 

function is passed a pointer to the block. Usually the size is hidden in a header just 

before the block pointed to, so something like this might work: 

void vPortFree(void *p) 
{ 
   size_t *sizePtr=((size_t *) p)-1; 
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   size_inUse -= *sizePtr; 
   free(p); 
} 

This would not be portable since another free() implementation might not use this 

convention, or may store it at a slightly different offset. 

A better option can be using an array to keep a record of each block of allocated 

memory. When the block is freed, we remove that record from our array. Ideally, we 

would sort these blocks by type, but calls to malloc() and free() do not contain 

any type information. The best indication available is the size of the allocations. 

Therefore, the array counter holds how many block we have of a certain size. Also, 

the array blocks is used to hold pointers to the allocated blocks. 

void *pvPortMalloc(size_t size) 
{ 
   void *newAllocation = malloc(size); 
 
   for (int i = 0; i < NUM_BLOCKS; i++) 
      if (blocks[i].addr == 0) 
      { 
         // found empty entry; use it  
         blocks[i].addr = newAllocation; 
         blocks[i].size = size; 
         incrementCountForSize(size); 
         break; 
      } 
   FS_totalAllocated += size; 
   return newAllocation; 
} 

vPortFree() can be written in a similar way: 

void vPortFree(void *blockToFree) 
{ 
   for (int i = 0; i < NUM_BLOCKS; i++) 
      if (blocks[i].addr == blockToFree) 
      { 
         // found block being released  
         decrementCountForSize(blocks[i].size); 
         FS_totalAllocated -= blocks[i].size; 
         blocks[i].addr = 0; 
         blocks[i].size = 0; 
         break; 
      } 
   free(blockToFree); 
} 

The proposed arrays are defined as: 

typedef struct 
{ 
   void * address; 
   size_t size; 
} BlockEntry 
 
typedef struct 
{ 
   int count; 
   size_t size; 
} Counter; 
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static BlockEntry blocks[NUM_BLOCKS]; 
static Counter counters[NUM_SIZES]; 

It is also worth mentioning that NUM_SIZES and NUM_BLOCKS should be chosen to be 

large enough to cope with the number of allocations in the system, but not so large 

that we use up all of the RAM before we begin.  

 

2.3.2 Analyzing memory usage 

A simple way to analyze memory usage over time to set up a simple function or task 

that is called periodically to print (or save to a file) the number of allocated blocks of 

each size. The output may be similar to this: 

End of Iteration n End of Iteration n+1 … 

Size Allocated blocks Size Allocated blocks  

20 1 20 1  

24 5 24 10  

44 5 44 6  

By monitoring the printed information over time we can detect if the number of blocks 

of a certain size is growing in an abnormal way. However, having a lot of object with 

similar sizes will make it more difficult to pin point the leak source. 

 

2.3.3 Tracking where memory is allocated 

To have a better chance hunting a suspicious memory leak source, we can collect 

information about where memory is allocated in a program. If we used a macro 

definition we can pick up this information without changing our function signature: 

#define pvPortMalloc(size_t size) pvPortMallocLine(size, __LINE__, __FILE__) 

Now the __LINE__ and __FILE__ variables will be automatically passed to our 

function. What’s left now is to make some small changes in our allocation function: 

void *pvPortMallocLine(size_t size , int line, char *file) 
{ 
   void *newAllocation = malloc(size); 
 
   for (int i = 0; i < NUM_BLOCKS; i++) 
      if (blocks[i].addr == 0) 
      { 
         // found empty entry; use it  
         blocks[i].addr = newAllocation; 
         blocks[i].size = size; 
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         blocks[i].line = line; 
         blocks[i].file = file; 
         incrementCountForSize(size); 
         break; 
      } 
   FS_totalAllocated += size; 
   return newAllocation; 
} 

Also our struct definition will need to be changed a bit: 

typedef struct  
{ 
   void * addr; 
   size_t size; 
   int line; 
   char * file; 
} BlockEntry; 

The __FILE__ string has a non-trivial overhead, so if we don’t have a lot of files in 

our project it’s recommended to depend only on the line number.  
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3 Stack overflow 

In an RTOS, there is a separate stack for each task, and each task might have drastically 

different stack size needs. Making things even more challenging, stack overflows often 

affect a somewhat unrelated memory area – global variables, allocated memory, or 

another task’s stack – and thus the subsequent problem does not manifest itself until 

much later than when the overflow occurred making it more difficult to detect. 

FreeRTOS provides the user with the option to check for overflow situations manually 

using an API, or at run time using an OS functionality. The option used is configured 

using the configCHECK_FOR_STACK_OVERFLOW configuration constant. 

3.1 Manual checking 

The first option is to do the detection manually. To select this method we set 

configCHECK_FOR_STACK_OVERFLOW to 0. The manual checking can be done by 

using the API function: 

uxTaskGetStackHighWaterMark() 

This function returns the amount of remaining stack space that has been available 

since the task started executing. The closer the high water mark is to zero, the closer 

the task has come to overflowing its stack. 

3.2 Runtime stack checking 

FreeRTOS provides two mechanisms that can be used to assist in the detection and 

correction of a stack overflow situation. It should be taken into consideration that 

these options are only available on architectures where the memory map is not 

segmented. This should be put in mind when choosing one of the memory 

management schemes discussed earlier. 

When a stack overflow is detected, the stack overflow hook function is called. The user 

should provide the hook function which has the following prototype: 

void vApplicationStackOverflowHook( TaskHandle_t xTask, 

                                    signed char *pcTaskName ); 

The xTask and pcTaskName parameters pass to the hook function the handle and 

name of the offending task respectively.  

http://www.freertos.org/a00110.html
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Method 1 

This method is selected when configCHECK_FOR_STACK_OVERFLOW is set to 1. At 

every context switching, the kernel checks that the stack pointer remains within the 

valid stack space after the context has been saved. If it’s found outside the valid range 

the stack overflow hook is called. This method is quick to execute but can miss stack 

overflows that occur between context saves. 

Method 2 

This method is selected when configCHECK_FOR_STACK_OVERFLOW is set to 2. In 

addition to what’s done in method 1 extra checks are performed. When a task is 

created, its stack is filled with a known pattern. Method 2 tests the last valid 16 bytes 

of the task stack space to verify that this pattern has not been overwritten. The stack 

overflow hook function is called if any of the 16 bytes have changed from their 

expected values. 

Method 2 is a bit slower than method 1 but it will most likely catch all stack overflows. 

3.3 Suggesting a checking method 

The decision here strongly depends on our choice for the memory management 

scheme. If we have chosen heap_1 then we are free to pick whatever method we 

want. A good suggestion would be to pick a runtime checking method at first, and if 

we can afford paying some extra overhead (especially if this is only for debug phase) 

that would be method 2. And since this method checks the last 16 bytes of the stack, 

it can give us some insight whether an overflow is soon to happen. After that, if an 

overflow is detected, we can give the task some extra stack size or make some 

structural changes in the task. In the latter case the manual watermark check can be 

useful to determine which events or cases the overflow is most likely related to, and 

therefore having a better idea what changes can improve the behavior. 

In the case when a memory management scheme other than heap_1 is chosen, there 

is no much place for a choice and we are tied to the manual method. 

The manual method is generally a good practice when we suspect that some task will 

consume a lot of stack size in its life time, or when we are short on memory in our 

system and want a better estimation of our needs. 
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4 Lock-free circular buffer 

4.1 Introduction 

Some functionalities for the NUTS satellite require the usage of a circular buffer. A 

circular buffer is basically a queue that works as if it is connected end-to-end 

eliminating the need to shift its elements when it’s consumed. Most of the circular 

buffers implementations out there are mainly dependent on semaphores to provide 

thread safety for the cases where multiple producers or multiple consumers exist.  

The usage of semaphores based blocking to provide thread safety comes with a set of 

undesired hazards such as dead locks and priority inversion. Therefore, several circular 

buffer implementations were explored and eventually a lock-free implementation that 

doesn’t depend on semaphores was chosen and ported to C with some modifications 

to be usable on our microcontroller based system. 

4.2 How does it work 

The queue is based on an array and 3 different indexes: 

 writeIndex: Where a new element will be inserted to. 

 readIndex: Where the next element where be extracted from. 

 maximumReadIndex: It points to the place where the latest "committed" data 

has been inserted. If it's not the same as writeIndex it means there are 

writes pending to be "committed" to the queue, that means that the place for 

the data was reserved (the index in the array) but the data is still not in the 

queue, so the thread trying to read will have to wait for those other threads to 

save the data into the queue. 

It is worth mentioning that 3 different indexes are required because the queue allows 

to set up as many producers and consumers as needed. In other words, this structure 

is what allows a multi-threaded behavior. This will be explained in more details later 

on. 

4.2.1 Inserting elements into the queue 

The following image describes the initial configuration of the queue. Each square 

describes a position in the queue. If it is marked with a big X, it contains some data. 

Blank squares are empty. In this particular case there are 2 elements currently inserted 

into the queue. WriteIndex points to the place where new data would be inserted. 

ReadIndex points to the slot which would be emptied in the next call to pop(). 
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Basically when a new element is going to be written into the queue using the push() 

function, the producer thread "reserves" the space in the queue incrementing 

WriteIndex. MaximumReadIndex points to the last slot that contains valid 

(committed) data. 

 

Once the new space is reserved, the current thread can take its time to copy the data 

into the queue. It then increments the MaximumReadIndex. 

 

Now there are 3 elements fully inserted in the queue. In the next step another task 

tries to insert a new element into the queue 

 

It has already reserved the space its data will occupy, but before this task can copy the 

new piece of data into the reserved slot a different thread reserves a new slot. There 

are 2 tasks inserting elements at the same time. 
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WriteIndex 
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Threads now copy their data in the slot they reserved, but it must be done in a strict 

order: The 1st producer thread will increment MaximumReadIndex, followed by 2nd 

producer thread. The strict order constraint is important because we must ensure data 

saved in a slot is fully committed before allowing a consumer thread to pop it from 

the queue. 

 

The first thread committed data into the slot. Now the 2nd thread is allowed to 

increment MaximumReadIndex as well. 

 

The second thread also incremented MaximumReadIndex. Now there are 5 elements 

into the queue. 

4.2.2 Removing elements from the queue 

I will not explain the removing process in details. In some sense it is similar to the 

insertion process except the ReadIndex is the pointer that’s moving in this case. The 

pop() function will return a failure when the ReadIndex and the 

MaximumReadIndex refer to the same place.  

Max 
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ReadIndex 

WriteIndex 
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ReadIndex WriteIndex 

ReadIndex 
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ReadIndex WriteIndex 
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5 Exception handling 

5.1 The usual way 

As it’s commonly known, C doesn’t directly support exception handling. So how do we 

know that a certain function has failed? Let’s take the following example function that 

performs popping a value from a stack. 

int stack_pop(int_stack * stack); 

The typical approach to express operation failure would be making the function return 

an error code. That seems like a neat way to do detect an error. But 

then stack_pop would need another argument in order to return the item and the 

function prototype would look like this: 

enum stack_status stack_pop(int_stack * stack, int * item); 

Comparing the two function prototypes we directly notice that the use of the later 

form repeatedly makes our code less readable and thus, most likely, less 

maintainable. 

The basic function of exception handling is to transfer control to an exception-handler 

when an error occurs, where the handler resides somewhere higher up in the current 

function call hierarchy. [6] discusses the use of setjmp() and longjmp() to 

accomplish simple exception handling in C. Let’s take a look at the following code 

snippet: 

   jmp_buf jumper; 
 
   int function(int a, int b) 
   { 
      if (b == 0) // can't divide by 0 
         longjmp(jumper, -3); 
      return a / b; 
   } 
 
   void main(void) 
   { 
      if (setjmp(jumper) == 0) 
      { 
         int Result = function(7, 0); 
         // continue working with Result 
      } 
      else 
         printf("an error occured\n"); 
   } 

After the main() function starts executing and setjmp() will return 0 and 

function() will be called. Let’s suppose now that b equals to 0. In this case 

longjmp() will be executed causing the program to jump back to where setjmp() 

was called and returning this time ‘-3’ indicating an error and printing the error 
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message. As we notice the division was never executed therefore fulfilling our 

purpose.  

We may seem to have solved the problem. However, this example is a little too simple. 

It relies on a single global variable called "jumper," which contains the information 

where the exception handler is. However, we need many different exception handlers 

in different functions, so how will function() know which jumper to use? Another 

issue is multitasking. Each task will have its own call hierarchy and thus needs its own 

jumper or set of jumpers.  

5.2 Using an exception handling framework 

The framework proposed in [5] builds on the previous concept creating a dynamically 

linked list of exception handler records. Such a record will contain 

a jmp_buf structure and some supplemental information. Each function that defines 

an exception-handler adds such a record to the list and removes it from the list when 

it returns. These details are hidden from the user in a library called “e4c.h” and the 

function calls are formed as macros with the names try, catch and throw which are 

familiar to users who have dealt with other exception supporting languages such as 

C++.  

Let’s get back to the stack_pop() function and rewrite it to throw and exception in 

case of an empty stack: 

int stack_pop(int_stack * stack){ 
 
    if( stack_is_empty(stack) ) throw(StackUnderflowException, NULL); 
 
    ... 
} 

Now we write the main() to use the aforementioned library. First we need to make 

sure that we call the stack functions within an exception context that we establish by 

calling e4c_using_context(E4C_TRUE){} , and each exception related operation 

after that should be within the body of this context. Here is an example of the usage: 

#include <stdio.h> 
#include "e4c.h" 
#include "stack.h" 
 
int main(int argc, char * argv[]){ 
 
e4c_using_context(E4C_TRUE){ 
 
    int_stack stack; 
    stack_construct(&stack, 3); 
    int x; 
 
    try{ 
        /* this will throw an exception since the stack is empty */ 
        stack_pop(&stack);  
    } 
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    catch(StackException){ 
        printf("Error: %s\n", e4c_get_exception()->message); 
    } 
    finally{ 
        stack_destruct(&stack); 
    } 
} 
} 

Another way to set up the exception context is by calling 

e4c_context_begin() when the context starts, and e4c_context_end() when it 

ends. This may be more suitable when the context cover a large chunk of code. 

 

5.3 Documenting exceptions 

It is a good practice to document which exceptions a function can throw (and under 

what circumstances), so the caller can get ready to handle them. This can be done in 

the same way we document the parameters and return value of a certain function. 

This can be an example of good documentation: 

 
/** 
 * Returns (and removes) the item at the top of the stack. 
 * 
 * @param stack The stack to pop from 
 * @return the topmost item 
 * 
 * @throws NullPointerException if stack is NULL 
 * @throws StackUnderflowException if stack is empty 
 */ 
int stack_pop(int_stack * stack); 

 

5.4 Summary 

Using exceptions allows us to design more elegant interfaces. Our functions don't 

need to return values just for the sake of error handling.  

What has been done in this project (regarding exception handling) is reviewing 

different approaches to handle errors in the C language. Also several exception 

handling frameworks has be evaluated, e.g. the one used in OnTime ROTS, although 

they haven’t been mentioned in this report. Exceptions4C framework was chosen 

because it is well documented, easy to use and has a nice exceptions hierarchy. 



22 
 

5.5 Further work 

Although the discussed framework works with FreeRTOS without problems when 

tested in a small project, it may cause further issues in the long run. One of the nice 

features of this framework is the support of multi-threading (can be activated using a 

certain macro). Anyway, the thread-safe implementation relies on pthreads, the POSIX 

API for writing multithreaded application. Therefore, for an optimum compatibility, 

this implementation should be ported to the FreeRTOS API.  

I have actually started to work on porting it but giving the complexity of the task and 

the limited time available I couldn’t fulfill anything major in this respect. So a possible 

future work can be porting the implementation from POSIX to FreeROTS API.   
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6 Using RAID 4 techniques for error detection 

in embedded systems 

In this section I will describe a software technique for detecting soft errors occurring 

in digital systems. Before going into details of this technique we will take a look at one 

of the alternative methods used for error detection which is complete operational 

redundancy. 

6.1 Detection using redundancy 

[7] explains in details a number of software techniques for fault tolerance based 

mainly on redundancy. We will briefly review the methods used for detecting errors 

affecting data and conditional instructions. The idea is to define the interdependence 

relationships between the variables of the program and to classify them in two 

categories according to their role in the program: intermediary variables and final 

variables. 

Once the variables relationships are drawn up, all the variables in the program are 

duplicated. For each operation carried out on an original variable, the operation is 

repeated for its replica. 

The next figure shows an example of program transformation: 

 

Figure 2: Transformation rule targeting errors affecting data 

After each write operation on the final variables a consistency check between the 

values of the two variables (original and duplicated) is introduced. An error is signaled 



24 
 

if there is a difference between the value of the original variable and the one of the 

duplicated variable. 

In addition to the errors affecting data, an error can affect a control instruction such 

as conditional instructions. In this case, extra checks should be added especially when 

this condition can cause a critical change in the execution flow. This can be illustrated 

in the following figure: 

 

Figure 3: Transformation targeting errors affecting control instructions 

 

6.2 A more manageable way 

The previous method indeed achieves a very good error detection rate. However, the 

resulting code is often confusing, hard to read and difficult to maintain. This may 

ultimately have negative consequences, increasing the potential of human errors. For 

example, in a program that contains thousands of lines it is not very unlikely that a 

programmer mistakenly replaces a2 with a1. Depending on its place, this bug may not 

have direct consequences, causing a failure much later in the execution cycle. We can 

just imagine how painful would it be to look for this tiny mistake in a huge source code. 

The method I propose is fairly simple and it’s not a break through by any means. In the 

hard disks world, RAID4 technique is a very successful method for error detection and 

correction using the simple concept of parity. This, combined with the exception 

handling method discussed in the previous chapter, can give us a very elegant and 

effective error handling mechanism. 

I have chosen to do my test implementation in C++ to make use of the operator 

overloading feature. I have also implemented a simple test bench with error injection 

function to simulate bit flipping situations. A new type has been defined, and called 

intx, to serve as the error safe interface between the programmer and the actual 

integer operation. An intx variable can be used exactly as a normal integer so the 

user can keep programing in the way that’s comfortable to him without worrying 

about error checking. All that the user has to do is to put the critical operations inside 

a try{} block and catch any potential error. 
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intx arr[3]; 

try 

{ 

 arr[0] = 0x0304; 

 arr[1] = arr[0] * 13; 

 error_injection(); 

 arr[2] = arr[1] * arr[0]; 

} 

catch (const char* msg) 

{ 

 errors_count++; 

} 
 
 

The error_injection() function will inject a single error in a random byte from a 

random element in the array. If an error is detected in any of the data that has been 

retrieved from the memory, an exception will directly be thrown and can be dealt with 

in the catch{} block. 

Trying to implement the same example using the redundancy method and supposing 

all variable will be needed later we get the following code: 

int arr1[3]; 

int arr2[3]; 

try 

{ 

 arr1[0] = 0x0304; 

 arr2[0] = 0x0304; 

 arr1[1] = arr1[0] * 13; 

 arr2[1] = arr2b[0] * 13; 

 if (arr2[1] != arr1[1]) 

  throw "VariableFieldsMismatch"; 

 error_injection(); 

 arr1[2] = arr1[1] * arr1[0]; 

 arr2[2] = arr2[1] * arr2[0]; 

 if (arr2[2] != arr1[2]) 

  throw "VariableFieldsMismatch"; 

} 

catch (const char* msg) 

{ 

 errors_count++; 

} 

Instead of the 3 lines required in the first case 10 lines of code are needed in the 

second. This difference can be higher if a more complex example is used. 

Under the hood, a union is used to represent the 4 bytes of an integer as 4+1 bytes to 

represent the parity. This is how the used union looks like: 

union { 

 uint32_t var; 

 uint8_t c[5]; 

}; 



26 
 

6.3 Operation 

When we are just concerned with error detection, the procedure is quite simple. 

After an assignment the parity byte is set depending on the other 4 bytes: 

 

After that, whenever this variable is needed the parity is verified before doing any 

operation and an exception is thrown if something went wrong. 

When it comes to error correction things get a bit tricky. For the sake of error 

correction another 5 bytes are added. They are declared using a union similar to the 

one shown earlier. Now suppose we have performed an assignment operation on 

some variable of the type intx. Initially, the first parity byte is calculated as before. 

 

Then we copy the data bytes from the first union to the second: 

 

Finally we calculate the parity for the second union: 

 

Now, whenever this variable is needed the parity of the first union is verified before 

doing any operation. If the check gave an error, the parity of the second union is check. 

0 1 2 3 4 

0 1 2 3 4 

0 1 2 3 4 

0 1 2 3 4 

0 1 2 3 4 

0 1 2 3 4 

0 1 2 3 4 
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If it was correct, we transfer the first 4 bytes to the first union. Otherwise, we throw 

an exception for variable fields mismatch. 

The following flow graph shows this procedure: 

 

Figure 4: Error detection and correction procedure 

 

6.4 Benchmarks 

The proposed method was tested against the redundancy technique by measuring and 

comparing the execution time under different conditions. In terms of the number of 

detected errors, both methods were able to capture all the injected errors. Perhaps 

this is not very realistic because of the simplicity of the error injection method used, 

but this is at least an indication that both are fairly robust. 

Regarding execution speed, the performance was very similar in an environment with 

many errors. The following chart shows a comparison of execution time in this test 

case for a number of runs: 

Series1: Proposed method 

Series2: Redundancy method 

Test parity 

of 2nd union 

Test parity 

of 1st union 

Success 

Success Failure 

Correct error 

Success 

Throw exception 

Failure 
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Figure 5: Error detection - worst case scenario 

Unfortunately, in the best case where the environment produces no errors, the 

proposed method shows a remarkable drawback with a clear advantage of the 

redundancy method. The next chart shows the test case: 

 

Figure 6: Error detection - best case scenario 

Regardless of the relatively poor performance in the best case, we shouldn’t directly 

consider this solution useless. In an error intensive environment, in my opinion, it will 

have preferable features such as programming convenience and increased software 

reuse and maintainability. Also we should forget about the error correction ability that 

the other method lacks. Even if we decided to perform error correction using 

redundancy, we will produce even larger code size with the multiple variables copies 

that will make the code almost impossible to manage. 
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7 Discussion and Conclusion 

This report has discussed several topics, from some of operating systems matters such as 

memory management and stack overflow, to dealing with error handling, with an emphasis 

on error reporting. It also suggest a method for error detection and correction.  

Most embedded systems try to avoid dynamic memory allocation and keep their memory 

management as simplistic as possible. And throughout this project we noticed that using the 

simplest memory management scheme won’t just give assurance against some problems 

such as segmentation and memory leaks, but it will allow using more advanced techniques 

for stack overflow detection as well. That’s why the simpler techniques are, in most cases, 

more preferable over the other schemes that may give us some more convenience in use. 

This is especially true for applications like CubeSates, where having less potential sources of 

failure is a priority. 

Also, there has been a lot of emphasis in this report on the importance of an efficient error 

reporting mechanism. An efficient implementation of exception handling can reduce the 

amount of code necessary for error reporting and therefore making the code more 

manageable. Several exception handling frameworks exist. A feature rich framework was 

chosen and discussed in details. 

The last chapter of the report discussed a mechanism for using some type overloading to 

introduce parity bytes to the common data types. These additional bytes can be used for 

error detection and correction without forcing the programmers to have some strict coding 

guidelines. Although this technique lacks some efficiency, there is a potential for 

improvement and further work can be done to enhance its features. 
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8 Future work 

The field of error checking is very wide and there is a lot more to be done. The first 

potential for future work is the pointed mentioned earlier in chapter 5 to port the 

POSIX dependent multi-threaded implementation to FreeRTOS. 

The second potential is continuing the work with the proposed error checking 

technique. It’s true that it isn’t the most sophisticated one out there, but I believe 

there is a potential for development. I still haven’t fully tested the version with error 

correction, so this can be a good point to start from. 
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